Add like
Add dislike
Add to saved papers

Computational investigation of the antagonism effect towards GluN2B-Containing NMDA receptor: Combined ligand-based and target-based approach.

The interaction of GluN2B-Containing NMDA Receptor with 18 antagonists were investigated by a combined ligand-based and target-based approach. First, two distinct pharmacophore models were generated for antagonists which cluster in two groups with Catalyst (HipHop module). The pharmacophore of "ifenprodil group" antagonists includes three hydrophobic groups, one H-bond donor and one H-bond acceptor, the pharmacophore of "EVT101 group" antagonists involves one aromatic ring, two hydrophobic groups and one H-bond acceptor. Docking results and pharmacophore model confrontation allow the pharmacodynamic characteristics to be weighted and structural information integrated. Which results in the proposal of two interaction models inside the GluN2B binding cavity for two groups of antagonists. The interaction model of "ifenprodil group" antagonists consists of one hydrophobic group, one H-bond donor, one H-bond acceptor and an aromatic ring, while on the other hand, the interaction model of "EVT101 group" antagonists includes three hydrophobic groups and an aromatic ring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app