Add like
Add dislike
Add to saved papers

Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model.

Microvascular Research 2018 October 19
OBJECTIVES: Although excitements related to stem cell therapeutic outcomes have been highlighted enormously in asthma, the vast majority of works were conducted by researchers in animal models. Elucidating the mechanisms underlying the therapeutic effects of MSCs in asthmatic rats will provide a rational basis for assuring maximal safety of future clinical application of stem cells. In the current study, we sought to investigate the possible paracrine mechanism by which direct injection of MSCs and/or CM attenuate efficiently Th2-mediated inflammation in asthmatic lung tissues with the focus on ICAM-1 and VCAM-1 expression.

METHODS: Male rats were divided into four experimental groups (n = 6); healthy rats received PBS intratracheally (group C), sensitized rats received PBS intratracheally (group S), sensitized rats received CM intratracheally (group S + CM), and sensitized rats received PBS intratracheally containing 2 × 106 rBMMSCs (group S + MSCs). Two weeks post-transplantation, the expression of interleukin (IL)-5, -12 and INF-γ, ICAM-1 and VCAM-1 were assessed along with pathological injuries and the homing of MSCs into the lung tissues.

RESULTS: Our results showed CM, and notably rBMMSCs, returned the expression of IL-5, IL-12, INF-γ, ICAM-1, and VCAM-1 (p < 0.001 to p < 0.05) to the normal levels. Based on data, pathological injuries in pulmonary specimens of asthmatic rats were significantly attenuated (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully home to an asthmatic niche in cell-administrated rats.

CONCLUSIONS: Our data noted the potency of CM and especially MSCs in ameliorating pathological changes via intra-tracheal route presumably by targeting ICAM-1 and VCAM-1 in lung tissues in rat asthma model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app