Add like
Add dislike
Add to saved papers

Caprylic acid and nonanoic acid upregulate endogenous host defense peptides to enhance intestinal epithelial immunological barrier function via histone deacetylase inhibition.

The intestinal epithelial barrier plays a critical role in the etiopathogenesis of ulcerative colitis. This study aims to explore the potential effects and underlying mechanisms of medium chain fatty acids (caprylic acid and nonanoic acid) on intestinal epithelial barrier function. Using the porcine jejunal epithelial cell line IPEC-J2, a well-established model, challenged with Escherichia coli ATCC 43889 (O157:H7), we found that treatment with caprylic acid (C8) and nonanoic acid (C9) significantly reduced bacterial translocation, enhanced antibacterial activity, and remarkably increased the secretion of porcine β-defensins 1 (pBD-1) and pBD-2. Mechanistically, like TSA (a histone deacetylase inhibitor), C8 and C9 attenuated the activity of the classical histone deacetylase pathway to facilitate the acetylation of histone 3 lysine 9 (H3K9) at the promoters pBD-1 and pBD-2, and consequently augmented the gene expression of pBD-1 and pBD-2. In conclusion, with their combined antibacterial and defense peptide-induced roles, the use of C8 and C9 may provide a novel method to protect the intestinal barrier of animals and humans from bacterial infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app