Add like
Add dislike
Add to saved papers

Influence of carbonate on sequestration of U(VI) on perovskite.

Cubic perovskite (CaTiO3 ) was successfully synthesized by a facile solvothermal method and was utilized to sequestrate U(VI) from aqueous solutions. The batch experiments revealed that carbonate inhibited U(VI) sequestration at pH > 6.0 due to the formation of uranyl-carbonate complexes. The maximum sequestration capacity of U(VI) on perovskite was 119.3 mg/g (pH 5.5). The sequestration mechanism of U(VI) on perovskite were investigated by XPS and EXAFS techniques. According to XPS analysis, the presence of U(IV) and U(VI) oxidation states revealed the photocatalytic reduction of U(VI) by perovskite under UV-vis irradiation. In addition, photocatalytic reduction performance significantly decreased in the presence of carbonate. Based on EXAFS analysis, the occurrence of U-Ti and U-U shells revealed the inner-sphere surface complexation and reductive precipitation of U(VI) on perovskite. These findings herein are crucial for the application of perovskite-based composites in the decontamination of U(VI) in aquatic environmental cleanup.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app