Add like
Add dislike
Add to saved papers

S-Alk(en)ylmercaptocysteine suppresses LPS-induced pro-inflammatory responses in murine macrophages through inhibition of NF-κB pathway and modulation of thiol redox status.

The Allium vegetable-derived metabolite, S-alk(en)ylmercaptocysteine (CySSR), has been reported to modulate oxidative stress and inflammatory responses. However, the underlying mechanisms of action and structure-activity relationships are not completely understood. We investigated the mechanistic basis of the protective effects of CySSR on pro-inflammatory responses involving redox/oxidative stress induced by E. coli lipopolysaccharide (LPS) using RAW 264.7 cells. CySSR (R = allyl, "A" or 1-propenyl, "Pe") pre-treatments conferred concentration-dependent reductions in cytokines (TNF-α, IL-1β and IL-6), NO production and iNOS (inducible nitric synthase) overexpression, and attenuated oxidant production in LPS-stimulated RAW 264.7 cells where viability remained > 90%. These protective effects were manifested through inhibited activation of the nuclear factor-kappa B (NF-κB) signaling pathway via suppression of the IκB kinases (IKK) phosphorylation possibly by transforming growth factor β-activated kinase 1 or a kinase further upstream the canonical NF-κB signaling pathway. The attenuation of LPS-induced inflammation by CySSRs was associated with enhanced levels of cellular cysteine (CySH) and glutathione (GSH) mediated by cellular import/reduction of CySSR and the induction of glutamate cysteine ligase (GCL), one of > 200 nuclear factor erythroid 2-related factor 2 (Nrf2) regulated proteins. The reduction of anti-inflammatory effect of CySSR following pretreatment of cells with L-buthionine-S,R-sulfoximine (BSO) implicates GSH having a major role in reducing inflammation, likely in the context of other Nrf2-regulated antioxidant enzymes that scavenge H2 O2 and peroxides using GSH as co-substrate. The anti-inflammatory effect of CySSPe was significantly greater than CySSA for almost all indicators measured, and cell metabolites of CySSRs may have a role in attenuating NF-κB signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app