Add like
Add dislike
Add to saved papers

Metabolism and disposition of arsenic species from oral dosing with sodium arsenite in neonatal CD-1 mice. IV. Toxicokinetics following gavage administration and lactational transfer.

Arsenic is a ubiquitous contaminant, with typical human dietary intake below 1 μg/kg bw/d and extreme drinking water exposures up to ∼50 μg/kg bw/d. The formation and binding of trivalent metabolites are central to arsenic toxicity and strong human evidence suggests special concern for early life exposures in the etiology of adult diseases, especially cancer. This study measured the metabolism and disposition of arsenite in neonatal mice to understand the role of maturation in metabolic activation and detoxification of arsenic. Many age-related differences were observed after gavage administration of arsenite, with consistent evidence in blood and tissues for higher exposures to trivalent arsenic species in neonatal mice related to the immaturity of metabolic and/or excretory functions. The evidence for greater tissue binding of arsenic species in young mice is consistent with enhanced susceptibility to toxicity based on metabolic and toxicokinetic differences alone. Lactational transfer from arsenite-dosed dams to suckling mice was minimal, based on no dosing-related changes in the levels of arsenic species in pup blood or milk collected from the dams. Animal models evaluating whole-life exposure to inorganic arsenic must use direct dosing in early neonatal life to predict accurately potential toxicity from early life exposures in children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app