Add like
Add dislike
Add to saved papers

Proviral insertion in murine lymphomas 2 promotes stomach cancer progression by regulating apoptosis via reactive oxygen species-triggered endoplasmic reticulum stress.

Gastric cancer is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for gastric cancer. Increasing studies have shown that proviral insertion in murine lymphomas 2 (PIM2) functions as critical regulator of multiple cancers. However, it remains unknown whether and how PIM2 regulates gastric cancer progression. In this study, PIM2 was increased in the gastric cancer tissues of patients. Patients with high PIM2 expression levels had significantly shorter survival than those with low PIM2 expression. PIM2 knockdown reduced proliferation, migration and invasion in vitro by up-regulating E-cadherin, and down-regulating N-cadherin and Vimentin. Knockdown of PIM2 induced apoptosis in gastric cancer cells, which was regulated by endoplasmic reticulum (ER) stress, as evidenced by the increased expression levels of Activating transcription factor (ATF) 6, ATF4, X-box- binding protein-1 (XBP-1) and C/EBP homologous protein (CHOP). In addition, our data showed that PIM2 silence induced reactive oxygen species (ROS) production, leading to the activation of c-Jun N-terminal kinase (JNK). Importantly, we found that PIM2 knockdown-induced apoptosis and ER stress could be abolished by reducing reactive oxygen species (ROS) generation. In vivo, PIM2 knockdown showed a significant reduction in SGC-7901 xenograft tumor size. In summary, our findings provided experimental evidence that PIM2 might function as an important oncogene in gastric cancer, which supplied promising target for developing new therapeutic strategy in gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app