Add like
Add dislike
Add to saved papers

Graphene and AuNPs based electrochemical aptasensor for ultrasensitive detection of hydroxylated polychlorinated biphenyl.

Analytica Chimica Acta 2018 December 25
An electrochemical aptasensor for ultrasensitive detection of hydroxylated polychlorinated biphenyl (OH-PCB) was developed. In this work, the sulfydryl aptamer selected for OH-PCB was easily immobilized on the surface of the modified glassy carbon electrode via Au-S bond due to incorporation of gold nanoparticles/poly dimethyl diallyl ammonium chloride-graphene composite. The fabrication process of the electrochemical aptasensor was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The peak currents obtained by differential pulse voltammetry decreased with the increasing of OH-PCB concentrations. The current responded approximately logarithmically to the OH-PCB concentration ranging from 2.9 × 10-11  M to 2.9 × 10-7  M with excellent linear correlation performance. The detection limit of OH-PCB was estimated as low as 5.3 × 10-12  M. The developed method had been successfully applied to analyzing lake water. Particularly, the method of the electrochemical aptasensor opens up a new perspective in environmental monitoring by the aptamer identification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app