JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IL-2Rα up-regulation is mediated by latent membrane protein 1 and promotes lymphomagenesis and chemotherapy resistance in natural killer/T-cell lymphoma.

Cancer Communications 2018 October 20
BACKGROUND: Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive non-Hodgkin lymphoma often resistant to chemotherapy. Serum level of soluble IL-2 receptor α (IL-2Rα) is elevated in NKTCL patients and correlates significantly with treatment response and survival. In the current study we examined the potential role of IL-2Rα by over-expressing IL-2Rα in representative cell lines.

METHODS: Levels of IL-2Rα were evaluated in the human natural killer cell line NK-92 and the NKTCL cell line SNK-6. Lentiviral vectors were used to express latent membrane protein 1 (LMP1) in NK-92 cells, and IL-2Rα in both NK-92 and SNK-6 cells. The biological effects of these genes on proliferation, apoptosis, cell cycle distribution, and chemosensitivity were analyzed.

RESULTS: Expression of IL-2Rα was significantly higher in SNK-6 cells than in NK-92 cells. Expressing LMP1 in NK-92 cells remarkably up-regulated IL-2Rα levels, whereas selective inhibitorss of the proteins in the MAPK/NF-κB pathway significantly down-regulated IL-2Rα. IL-2Rα overexpression in SNK-6 cells promoted cell proliferation by altering cell cycle distribution, and induced resistance to gemcitabine, doxorubicin, and asparaginase. These effects were reversed by an anti-IL-2Rα antibody.

CONCLUSIONS: Our results suggest that LMP1 activates the MAPK/NF-κB pathway in NKTCL cells, up-regulating IL-2Rα expression. IL-2Rα overexpression promotes growth and chemoresistance in NKTCL, making this interleukin receptor a potential therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app