Add like
Add dislike
Add to saved papers

Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals.

The interaction of soil organic matter (SOM) and minerals is a critical mechanism for retaining SOM in soil and protecting soil fertility and long-term agricultural sustainability. The chemical speciation of carbon (C) and nitrogen (N) in mineral-associated SOM can be sensitive to both anthropogenic management practices and landscape positions, but these two aspects are rarely examined in tandem. Here we examined the effects of long-term (>100 years) agricultural management and erosion on mineral-associated SOM along grassland and agricultural hillslope transect. The mineral-associated SOM was obtained using particle size and density fractionation approaches. Chemical speciation of C and N in mineral-associated SOM was characterized using micro X-ray absorption near-edge fine structure (XANES) spectroscopy. The extent of SOM coverage and contribution of iron oxyhydroxides (Fe oxides) to the total specific mineral surface area (SSA) were determined using the BET-N2 adsorption method of soil samples under three conditions: untreated, SOM removal, and Fe oxides removal. The amount of SSA covered by SOM (SSASOM-covered ) was lower by 61% and 37% in cultivated eroding and depositional topsoils, respectively, compared with the corresponding grassland. Depositional soils had higher SSASOM-covered than eroding positions. In the cultivated hillslopes, aromatic and phenolic C species were more abundant in depositional soils than in the eroding topsoils, indicating that deposition and burial of eroded or in-situ plant-derived phenolic C protected them from further transformation. Our results, therefore, highlight the importance of anthropogenic activities in the interaction of SOM and minerals, including C speciation changes, which may exert a considerable influence on SOM retention in soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app