Add like
Add dislike
Add to saved papers

Nonequilibrium Solute Capture in Passivating Oxide Films.

We report experimental results on the composition and crystallography of oxides formed on NiCrMo alloys during both high-temperature oxidation and aqueous corrosion experiments. Detailed characterization using transmission electron microscopy and diffraction, aberration-corrected chemical analysis, and atom probe tomography shows unexpected combinations of composition and crystallography, far outside thermodynamic solubility limits. The results are explained using a theory for nonequilibrium solute capture that combines thermodynamic, kinetic, and density functional theory analyses. In this predictive nonequilibrium framework, the composition and crystallography are controlled by the rapidly moving interface. The theoretical framework explains the unusual combinations of composition and crystallography, which we predict will be common for many other systems in oxidation and corrosion, and other solid-state processes involving nonequilibrium moving interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app