Add like
Add dislike
Add to saved papers

Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy.

Grains in crystalline materials usually grow with increased thermal exposure. Classical phenomena such as recrystallization may lead to a purely temporary decrease in the grain size, while recent advances in alloy design can yield thermally stable nanocrystalline materials in which grain growth stagnates. But grains never shrink, since there is a lack of interface-generating mechanisms at high temperatures, which are required to decrease the grain size if such was the system's thermodynamic tendency. Here we sidestep this paradigm by designing a nanocrystalline alloy having an allotropic phase transformation-an interface-generating mechanism-such that only the high-temperature phase is stabilized against grain growth. We demonstrate that for an Fe-Au alloy cycled through the α↔γ transformation, the high-temperature phase (γ-Fe) has a stable fine grain size, smaller than its low-temperature counterpart (α-Fe). The result is an unusual material in which an increase in temperature leads to finer grains that are stable in size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app