Add like
Add dislike
Add to saved papers

Instabilities of High Speed Dislocations.

Despite numerous theoretical models and simulation results, a clear physical picture of dislocations traveling at velocities comparable to the speed of sound in the medium remains elusive. Using two complementary atomistic methods to model uniformly moving screw dislocations, lattice dynamics and molecular dynamics, the existence of mechanical instabilities in the system is shown. These instabilities are found at material-dependent velocities far below the speed of sound. We show that these are the onset of an atomistic kinematic generation mechanism, which ultimately results in an avalanche of further dislocations. This homogeneous nucleation mechanism, observed but never fully explained before, is relevant in moderate and high strain rate phenomena including adiabatic shear banding, dynamic fracture, and shock loading. In principle, these mechanical instabilities do not prevent supersonic motion of dislocations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app