Add like
Add dislike
Add to saved papers

Comprehensive Stability Improvement of Silver Nanowire Networks via Self-Assembled Mercapto Inhibitors.

Instability of silver nanowire (AgNW) has been regarded as a major obstacle to its practical applications in optoelectrical devices as transparent electrodes. Physical barrier layers such as polymer, metal, and graphene have been generally employed to improve the stability of AgNW in previous study. Herein, we first report self-assembled organothiols as an inhibitor for AgNW to achieve an overall enhancement in antioxidation, antisulfidation, thermal stability, and anti-electromigration. The self-assembled monolayers (SAMs) of phenyl azoles, methoxy silane, and methyl alkane were formed on the surface of AgNW via Ag-S covalent bond as barrier layers which provided protective effects against corrosives (e.g., O2 , H2 S). In particular, the decoration of 2-mercaptobenzimidazole (MBI) offered the best resistance to H2 S and excellent stability under a high-temperature and high-humidity environment (85 °C and 85 RH %) for 4 months. Moreover, different SAMs exhibited a stabilizing or destabilizing effect on Plateau-Rayleigh instability of AgNW, which realized the tunability of degradation temperature of AgNWs, for example, increasing by ≥100 °C with MBI SAM or decreasing by ∼50 °C with octadecanethiol SAM compared with pristine AgNWs. Notably, the MBI-decorated AgNWs could survive at 400 °C which is by far the highest bearing temperature for solution-processed AgNW film. As a result, a transparent heater made of the MBI-AgNWs exhibited superior heating characteristics (higher working temperature and durability), as compared with the pristine AgNW-based heater. Our findings on the organothiols decoration not only provide a new paradigm in overall stability improvement of NW of noble metals but also show the potential in morphology controllability of metal NW.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app