Add like
Add dislike
Add to saved papers

Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective.

Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break-ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node-based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well-known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non-uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125-95 million years ago (Ma)]; total-group Osteoglossomorpha (207-167 Ma); Characiformes (120-95 Ma; a younger estimate of 97-75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235-21 Ma); Cyprinodontiformes (80-67 Ma); Channidae (79-43 Ma); Percichthyidae (127-69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of semi-independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows that long-distance dispersals and regional extinctions can confound and erode pre-existing vicariance-driven patterns. It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took place during the Late Cretaceous and Cenozoic. Although long-distance dispersals likely shaped the distributions of several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological dynamics are still unclear and require further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app