Add like
Add dislike
Add to saved papers

Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.

The electroencephalogram signals are used to distinguish different motor imagery tasks in brain-computer interfaces. In most studies, in order to classify the EEG signals recorded in a cue-guided BCI paradigm, time segments for feature extraction after the onset of the visual cue were selected manually. In addition, in these studies the authors have selected a single identical time segment for different subjects. The present study emphasized on the inter-individual variability and difference between different motor imagery tasks as the potential source of erroneous results and used mutual information and the subject specific time interval to overcome this problem. More specifically, a new method was proposed to automatically find the best subject specific time intervals for the classification of four-class motor imagery tasks by using MI between the BCI input and output. Moreover, the signal-to-noise ratio was used to calculate the MI values, while the MI values were used as feature selection criteria to select the discriminative features. The time segments and the best discriminative features were found by using training data and used to assess the evaluation data. Furthermore, the CSP algorithm was used to extract signal features. The dataset 2A of BCI competition IV used in this study consisted of four different motor imagery signals, which were obtained from nine different subjects. One Vs One decomposition scheme was used to deal with the multi-class nature of the problem. The MI values showed that the obtained time segments not only varied between different subjects but also varied between different classifiers of different pair of classes. Finally, the results suggested that the proposed method was efficient in classifying multi-class motor imagery signals as compared to other classification strategies proposed by the other studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app