English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Effect of autoclave on surface microstructure and cyclic fatigue resistance of R-phase rotary instruments].

OBJECTIVE: To compare the effects of autoclave on surface microstructure and cyclic fatigue resistance of K3XF and K3.

METHODS: Forty-eight size 25, 0.06 taper 25 mm-long K3XF or K3 were randomly divided into 4 groups (n=12). The instruments from group 1 were not autoclaved, and the groups 2 to 4 underwent autoclave for 10 cycles, 20 cycles, and 30 cycles, respectively. The surface microstructure of two instruments randomly selected from each group was observed using scanning electron microscope (SEM). The remaining 10 instruments were submitted to the cyclic fatigue test by using a simulated metal root canal with curvature of 60° and radius 3.5 mm. The time till fracture was recorded, the number of cyclic fatigue (NCF) calculated, the fragment length evaluated, and the topographic features were analyzed using SEM. The data were analyzed using the two-way ANOVA analysis by SAS 9.3 software at a significance level of P<0.05.

RESULTS: SEM observation identified rough features on the surface of K3XF with micropores existing evenly. K3 was characterized by machining grooves, which located specifically in the flute, leaving a smooth cutting edge. After autoclave, SEM observation indicated that the micropores in the surface of K3XF became larger and more, whereas the machining grooves in the surface of K3 were squeezed, out of shape and flaking. As far as the NCF was concerned, new K3XF was 210±59, and no significant difference was found after 10, 20, and 30 cycles of autoclave for K3XF, values being 178±37, 208±48, and 227±43, respectively (P>0.05). For K3, the new one was 145±38, and no significant difference in NCF was demonstrated after 10 and 20 cycles of autoclave, with the values of 128±43 and 124±46, respectively (P>0.05). However, after 30 cycles of autoclave of K3, significant increase to 216±38 was identified (P<0.05). Topographic features demonstrated typical cyclic fatigue for all the groups.

CONCLUSION: The surface roughness of K3XF was increased after autoclave, while the cyclic resistance remained stable after up to 30 cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app