ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Surface microstructure and cyclic fatigue resistance of electro discharged machining nickel-titanium endodontic instrument].

OBJECTIVE: To compare the surface microstructures and cyclic fatigue resistance of HyFlex EDM with HyFlex CM and HyFlex NT.

METHODS: Twelve 25 mm-long 25#/- HyFlex EDM and twelve 25 mm-long 25#/0.06 taper HyFlex CM or HyFlex NT were selected. The surface microstructure of the 2 instruments which were randomly selected from each group was observed by using scanning electron microscope (SEM). The remaining 10 instruments from each group were submitted to the cyclic fatigue test by using a simulated stainless steel root canal with 60° angle of curvature and curvature radius of 3.5 mm. The time till fracture was recorded, the number of cyclic fatigue (NCF) was calculated, the length of fracture fragment was evaluated, and the topographic features were analyzed by using SEM. The data were analyzed by using one-way analysis via SPSS 23.0 software. The statistical significance level was set at 0.05.

RESULTS: SEM observation of the surface and microstructural characterization revealed peculiar melting appearance and evenly distributed micropores on the surface of HyFlex EDM while observations of the surface of both HyFlex CM and HyFlex NT demonstrated machining grooves and irregularities. The NCF of HyFlex EDM was 838±223, which was significantly higher than not only that of HyFlex CM (582±99), but also that of HyFlex NT (81±20) (P<0.05), and the difference between the latter two groups was significant, as well (P<0.05). The length of fractured fragments of HyFlex EDM was (7.27±0.28) mm, which was significantly longer than the HyFlex CM and HyFlex NT, with values of (6.72±0.26) mm and (6.62±0.37) mm, respectively (P<0.05). Topographic features demonstrated typical cyclic fatigue for all the three groups while the region of crack origins was more for HyFlex EDM and HyFlex CM than that of HyFlex NT. As far as the dimple area was concerned, that of HyFlex EDM was deeper and larger than that of HyFlex CM and HyFlex NT.

CONCLUSION: Within the limitations of this study, electro-discharge machining leads to peculiar melting appearance with micropores instead of machining grooves and irregularities on the surface of HyFlex EDM, which may be the reason why HyFlex EDM exhibits significantly better cyclicfatigue resistance than HyFlex CM and HyFlex NT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app