JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stem cell enriched-epithelial spheroid cultures for rapidly assaying small intestinal radioprotectors and radiosensitizers in vitro.

Scientific Reports 2018 October 19
Radiation therapy is one of the main treatment options for many cancer patients. Although high doses of radiation may maximize tumor cell killing, dose escalation is limited by toxicity to neighboring normal tissues. This limitation applies particularly to the small intestine, the second most radiosensitive organ in the body. Identifying small intestinal (SI) radioprotectors could enable dose escalation in the treatment of abdominopelvic malignancies. However, the only assay currently available to identify effects of radiomodulating drugs on the regenerating capacity of SI stem cells is the Withers-Elkind microcolony assay, which requires large numbers of mice, making it a costly and low throughput method. Here, we describe a novel spheroid formation assay (SFA) that utilizes SI stem cell-enriched three-dimensional epithelial spheroid cultures to identify gastrointestinal radiomodulators ex vivo. The SFA is scalable for high throughput screening and can be used to identify both radioprotectors and radiosensitizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app