Add like
Add dislike
Add to saved papers

TLR4/NF-κB axis induces fludarabine resistance by suppressing TXNIP expression in acute myeloid leukemia cells.

Overcoming drug resistance is one of key issues in treating refractory acute myeloid leukemia (AML). The Toll-like receptor 4 (TLR4) signaling pathway is involved in many aspects of biological functions of AML cells, including the regulation of pro-inflammatory cytokine products, myeloid differentiation, and survival of AML cells. Thus, targeting TLR4 of AML patients for therapeutic purposes should be carefully addressed. In this regard, we investigated the possible role of TLR4 as a regulatory factor against fludarabine (FA) cytotoxicity activity. Here, we identified the differential expression of TLR4 and CD14 receptors in AML cell lines and examined their relationship to FA sensitivity. We found that the stimulation of TLR4 with lipopolysaccharide (LPS) in a TLR4-expressing cell line, THP-1, increased cell viability under FA treatment condition and showed that TLR4 stimulation overcame FA sensitivity through the activation of NF-κB, which subsequently upregulated several anti-apoptotic genes. The inhibition of TLR4/NF-κB signaling could partially or completely reverse LPS-induced cell survival under FA treatment conditions. Interestingly, we found that the expression of thioredoxin-interacting protein (TXNIP), a well-known tumor suppressor, was induced by FA treatment; however, it was suppressed by LPS treatment. Furthermore, the expression level of TXNIP was critical for FA-induced cytotoxicity or LPS-induced FA resistance of THP-1 cells. Our data suggest that TXNIP plays an important role in FA-induced cytotoxicity and TLR4/NF-κB-mediated FA resistance of AML cells. Therefore, TXNIP may be a potential therapeutic target for AML treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app