Journal Article
Review
Add like
Add dislike
Add to saved papers

Heat Shock Proteins as a Potential Therapeutic Target in the Treatment of Gestational Diabetes Mellitus: What We Know so Far.

Gestational diabetes mellitus (GDM) is a complex condition that involves a variety of pathological mechanisms, including pancreatic β-cell failure, insulin resistance, and inflammation. There is an increasing body of literature suggesting that these interrelated phenomena may arise from the common mechanism of endoplasmic reticulum (ER) stress. Both obesity-associated nutrient excess and hyperglycemia disturb ER function in protein folding and transport. This results in the accumulation of polypeptides in the ER lumen and impairs insulin secretion and signaling. Exercise elicits metabolic adaptive responses, which may help to restore normal chaperone expression in insulin-resistant tissues. Pharmacological induction of chaperones, mimicking the metabolic effect of exercise, is a promising therapeutic tool for preventing GDM by maintaining the body's natural stress response. Metformin, a commonly used diabetes medication, has recently been identified as a modulator of ER-stress-associated inflammation. The results of recent studies suggest the potential use of chemical ER chaperones and antioxidant vitamins as therapeutic interventions that can prevent glucose-induced ER stress in GDM placentas. In this review, we discuss whether chaperones may significantly contribute to the pathogenesis of GDM, as well as whether they can be a potential therapeutic target in GDM treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app