Add like
Add dislike
Add to saved papers

DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid.

Corticosterone does not change in consistent ways across species and contexts, making it challenging to use as an indicator of chronic stress. We assessed DNA damage as a potential metric that could be a more integrative stress measurement with direct links to health. We captured free-living house sparrows, took an immediate blood sample, and transferred them to the laboratory, exposing them to the chronic stress of captivity. Biweekly blood and weight samples were then taken for 4 weeks. We immediately assessed DNA damage in red blood cells using the comet assay and later quantified corticosterone. Uric acid was analyzed in a separate group of birds. We found that birds initially lost, but began to regain weight over the course of captivity. DNA damage peaked within the first 10 days of captivity, and mostly remained elevated. However, the cellular distribution of damage changed considerably over time; most cells showed low levels of damage early, a bimodal distribution of high and low DNA damage during the peak of damage, and a wide unimodal distribution of damage at the end of the 4 weeks. Furthermore, corticosterone increased and remained elevated and uric acid decreased and remained depleted over the same period. Although both a molecular (DNA damage) and an endocrine (corticosterone) marker showed similar response profiles over the 4 weeks, they were not correlated, suggesting they reflect different aspects of the underlying physiology. These data provide convincing preliminary evidence that DNA damage has potential to be an additional indicator of chronic stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app