Add like
Add dislike
Add to saved papers

The impact of short- and long-range perception on population movements.

Navigation of cells and organisms is typically achieved by detecting and processing orienteering cues. Occasionally, a cue may be assessed over a much larger range than the individual's body size, as in visual scanning for landmarks. In this paper we formulate models that account for orientation in response to short- or long-range cue evaluation. Starting from an underlying random walk movement model, where a generic cue is evaluated locally or nonlocally to determine a preferred direction, we state corresponding macroscopic partial differential equations to describe population movements. Under certain approximations, these models reduce to well-known local and nonlocal biological transport equations, including those of Keller-Segel type. We consider a case-study application: "hilltopping" in Lepidoptera and other insects, a phenomenon in which populations accumulate at summits to improve encounter/mating rates. Nonlocal responses are shown to efficiently filter out the natural noisiness (or roughness) of typical landscapes and allow the population to preferentially accumulate at a subset of hilltopping locations, in line with field studies. Moreover, according to the timescale of movement, optimal responses may occur for different perceptual ranges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app