Add like
Add dislike
Add to saved papers

Oxidation of a Levitated Droplet of 1-Allyl-3-methylimidazolium Dicyanamide by Nitrogen Dioxide.

Understanding the reaction mechanisms of ionic liquids and their oxidizers is necessary to develop the next generation of hypergolic, ionic-liquid-based fuels. We studied reactions between a levitated droplet of 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), with and without hydrogen-capped boron nanoparticles, and nitrogen dioxide (NO2 ). The reactions were monitored with Fourier-transform infrared (FTIR) and Raman spectroscopy. The emergence of new structures in the FTIR and Raman spectra is consistent with the formation of functional groups including organic nitrites (RONO), nitroamines (R1 R2 NNO2 ), and carbonitrates (R1 R2 C=NO2 - ). Possible reaction mechanisms based on these new functional groups are discussed. The reaction rates were deduced at various temperatures by heating the levitated droplets with a carbon dioxide laser. We thereby determined an overall activation energy of 38.5 ± 2.3 kJ mol-1 for the oxidation of [AMIM][DCA] for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app