Add like
Add dislike
Add to saved papers

Resonance Raman, Electron Paramagnetic Resonance, and Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome c Peroxidases from Nitrosomonas europaea and Shewanella oneidensis.

Biochemistry 2018 November 14
Cytochrome c peroxidases (bCcPs) are diheme enzymes required for the reduction of H2 O2 to water in bacteria. There are two classes of bCcPs: one is active in the diferric form (constitutively active), and the other requires the reduction of the high-potential heme (H-heme) before catalysis commences (reductively activated) at the low-potential heme (L-heme). To improve our understanding of the mechanisms and heme electronic structures of these different bCcPs, a constitutively active bCcP from Nitrosomonas europaea ( NeCcP) and a reductively activated bCcP from Shewanella oneidensis ( SoCcP) were characterized in both the diferric and semireduced states by electron paramagnetic resonance (EPR), resonance Raman (rRaman), and magnetic circular dichroism (MCD) spectroscopy. In contrast to some previous crystallographic studies, EPR and rRaman spectra do not indicate the presence of significant amounts of a five-coordinate, high-spin ferric heme in NeCcP or SoCcP in either the diferric or semireduced state in solution. This observation points toward a mechanism of activation in which the active site L-heme is not in a static, five-coordinate state but where the activation is more subtle and likely involves formation of a six-coordinate hydroxo complex, which could then react with hydrogen peroxide in an acid-base-type reaction to create Compound 0, the ferric hydroperoxo complex. This mechanism lies in stark contrast to the diheme enzyme MauG that exhibits a static, five-coordinate open heme site at the peroxidatic heme and that forms a more stable FeIV ═O intermediate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app