Add like
Add dislike
Add to saved papers

Subgroup identification in clinical trials via the predicted individual treatment effect.

Identifying subgroups of treatment responders through the different phases of clinical trials has the potential to increase success in drug development. Recent developments in subgroup analysis consider subgroups that are defined in terms of the predicted individual treatment effect, i.e. the difference between the predicted outcome under treatment and the predicted outcome under control for each individual, which in turn may depend on multiple biomarkers. In this work, we study the properties of different modelling strategies to estimate the predicted individual treatment effect. We explore linear models and compare different estimation methods, such as maximum likelihood and the Lasso with and without randomized response. For the latter, we implement confidence intervals based on the selective inference framework to account for the model selection stage. We illustrate the methods in a dataset of a treatment for Alzheimer disease (normal response) and in a dataset of a treatment for prostate cancer (survival outcome). We also evaluate via simulations the performance of using the predicted individual treatment effect to identify subgroups where a novel treatment leads to better outcomes compared to a control treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app