Add like
Add dislike
Add to saved papers

The downregulation of WWOX induces epithelial-mesenchymal transition and enhances stemness and chemoresistance in breast cancer.

WW domain-containing oxidoreductase (WWOX), an important tumor suppressor, is essential for regulating cell proliferation and apoptosis. Our study demonstrates that low level of WWOX is associated with the triple-negative subtype of breast cancer (TNBC), which has higher stem cell phenotype and chemoresistance. We evaluated the role of WWOX in regulation of breast cancer stem cells (BCSC) phenotype and chemoresistance. Our results showed that knockdown of WWOX increases the stemness of breast cancer cells. Meanwhile, downregulation of WWOX induces the epithelial-mesenchymal transition (EMT) and chemoresistance of breast cancer cell lines. Our findings revealed the role of the WWOX in the regulation of the BCSC population and chemotherapeutic sensitivity and may provide insights for the development of more effective therapies targeting cancer stem cells in breast cancer. Impact statement Overcoming resistance to chemotherapy is one of the fundamental issues of clinical treatment and CSCs are responsible for the poor therapeutic effects of chemotherapy. WW domain-containing oxidoreductase (WWOX), an important tumor suppressor, regulates cancer cells' response to chemotherapy. The major finding of our study is the novel role of WWOX in the chemoresistance of breast cancer through the regulation of cell stemness and EMT. The plasticity may play a crucial role in tumor metastasis, treatment resistance and tumor recurrence. Our findings may shed new light on the alterations of BCSCs and pave the way for the discovery of novel and more effective therapies to treat breast cancer by targeting WWOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app