Add like
Add dislike
Add to saved papers

Quantifying Density Errors in DFT.

We argue that any general mathematical measure of density error, no matter how reasonable, is too arbitrary to be of universal use. However, the energy functional itself provides a universal relevant measure of density errors. For the self-consistent density of any Kohn-Sham calculation with an approximate functional, the theory of density-corrected density functional theory (DC-DFT) provides an accurate, practical estimate of this ideal measure. We show how to estimate the significance of the density-driven error even when exact densities are unavailable. In cases with large density errors, the amount of exchange-mixing is often adjusted, but we show that this is unnecessary. Many chemically relevant examples are given.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app