Add like
Add dislike
Add to saved papers

Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway.

Nucleic Acids Research 2018 October 19
DNA-damage tolerance protects cells via at least two sub-pathways regulated by proliferating cell nuclear antigen (PCNA) ubiquitination in eukaryotes: translesion DNA synthesis (TLS) and template switching (TS), which are stimulated by mono- and polyubiquitination, respectively. However, how cells choose between the two pathways remains unclear. The regulation of ubiquitin ligases catalyzing polyubiquitination, such as helicase-like transcription factor (HLTF), could play a role in the choice of pathway. Here, we demonstrate that the ligase activity of HLTF is stimulated by double-stranded DNA via HIRAN domain-dependent recruitment to stalled primer ends. Replication factor C (RFC) and PCNA located at primer ends, however, suppress en bloc polyubiquitination in the complex, redirecting toward sequential chain elongation. When PCNA in the complex is monoubiquitinated by RAD6-RAD18, the resulting ubiquitin moiety is immediately polyubiquitinated by coexisting HLTF, indicating a coupling reaction between mono- and polyubiquitination. By contrast, when PCNA was monoubiquitinated in the absence of HLTF, it was not polyubiquitinated by subsequently recruited HLTF unless all three-subunits of PCNA were monoubiquitinated, indicating that the uncoupling reaction specifically occurs on three-subunit-monoubiquitinated PCNA. We discuss the physiological relevance of the different modes of the polyubiquitination to the choice of cells between TLS and TS under different conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app