Add like
Add dislike
Add to saved papers

MEC: Misassembly Error Correction in contigs based on distribution of paired-end reads and statistics of GC-contents.

The de novo assembly tools aim at reconstructing genomes from next-generation sequencing (NGS) data. However, the assembly tools usually generate a large amount of contigs containing many misassemblies, which are caused by problems of repetitive regions, chimeric reads and sequencing errors. As they can improve the accuracy of assembly results, detecting and correcting the misassemblies in contigs are appealing, yet challenging. In this study, a novel method, called MEC, is proposed to identify and correct misassemblies in contigs. Based on the insert size distribution of paired-end reads and the statistical analysis of GC-contents, MEC can identify more misassemblies accurately. We evaluate our MEC with the metrics (NA50, NGA50) on four datasets, compared it with the most available misassembly correction tools, and carry out experiments to analyze the influence of MEC on scaffolding results, which shows that MEC can reduce misassemblies effectively and result in quantitative improvements in scaffolding quality. MEC is publicly available at https://github.com/bioinfomaticsCSU/MEC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app