Add like
Add dislike
Add to saved papers

Automated Cell Tracking using Motion Prediction-based Matching and Event Handling.

Automated cell segmentation and tracking enables the quantification of static and dynamic cell characteristics and is significant for disease diagnosis, treatment, drug development and other biomedical applications. This paper introduces a method for fully automated cell tracking, lineage construction, and quantification. Cell detection is performed in the joint spatio-temporal domain by a motion diffusion-based Partial Differential Equation (PDE) combined with energy minimizing active contours. In the tracking stage, we adopt a variational joint local-global optical flow technique to determine the motion vector field. We utilize the predicted cell motion jointly with spatial cell features to define a maximum likelihood criterion to find inter-frame cell correspondences assuming Markov dependency. We formulate cell tracking and cell event detection as a graph partitioning problem. We propose a solution obtained by minimization of a global cost function defined over the set of all cell tracks. We construct a cell lineage tree that represents the cell tracks and cell events. Finally, we compute morphological, motility, and diffusivity measures and validate cell tracking against manually generated reference standards. The automated tracking method applied to reference segmentation maps produces an average tracking accuracy score (TRA) of 99%, and the fully automated segmentation and tracking system produces average TRA of 89%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app