Add like
Add dislike
Add to saved papers

Antitumorigenic effect of damnacanthal on melanoma cell viability through p53 and NF-κB/caspase-3 signaling pathways.

Oncology Letters 2018 November
Melanoma is highly malignant, particularly prone to metastasizing to the skin. The incidence of melanoma varies markedly between countries, and is relatively low in China. The aim of the present study was to investigate the antitumorigenic effect of damnacanthal on melanoma cells, and its molecular mechanism. MUM-2B cells were treated with 0-20 µM damnacanthal for 12, 24 and 48 h. In vitro , it was demonstrated that damnacanthal inhibited proliferation and promoted apoptosis of melanoma cells in a dose- and time-dependent manner. Damnacanthal treatment increased caspase-3/8 and 9 activity, and promoted B-cell lymphoma 2-associated X protein, tumor protein p53 (p53) and p21 protein expression levels in melanoma cells. Damnacanthal treatment also resulted in downregulated nuclear factor-κB (NF-κB), cyclin D and cyclin E protein expression in melanoma cells. In conclusion, the results of the present study demonstrated that the antitumorigenic activity of damnacanthal on melanoma cells is executed via the p53/p21 and NF-κB/cyclin/ caspase-3 signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app