Add like
Add dislike
Add to saved papers

Asymmetry of the atomic-level stress tensor in homogeneous and inhomogeneous materials.

The stress tensor is described as a symmetric tensor in all classical continuum mechanics theories and in most existing statistical mechanics formulations. In this work, we examine the theoretical origins of the symmetry of the stress tensor and identify the assumptions and misinterpretations that lead to its symmetric property. We then make a direct measurement of the stress tensor in molecular dynamics simulations of four different material systems using the physical definition of stress as force per unit area acting on surface elements. Simulation results demonstrate that the stress tensor is asymmetric near dislocation cores, phase boundaries, holes and even in homogeneous material under a shear loading. In addition, the atomic virial stress and Hardy stress formulae are shown to significantly underestimate the stress tensor in regions of stress concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app