Add like
Add dislike
Add to saved papers

Kinetic study of sulforaphane stability in blanched and un-blanched broccoli ( Brassica oleracea var. italica ) florets during storage at low temperatures.

Sulforaphane is a health-promoting compound found in broccoli. Given its high thermo-lability, its preservation through high-temperature processes seems inconvenient. Accordingly, storage at low temperature is an alternative. There are no studies about the evolution of sulforaphane content during storage at low temperatures. The change of sulforaphane content in blanched and un-blanched broccoli florets during storage at 10, - 1, - 21 and - 45 °C for 83 days was studied. In blanched broccoli, sulforaphane content followed a first-order degradation kinetics (R2  ≥ 0.95). A two-consecutive irreversible reactions model described adequately the evolution of sulforaphane content in un-blanched broccoli (R2  ≥ 0.94). Activation energies from Arrhenius equation resulted in 19.4 kJ/mol for blanched and 30 kJ/mol (formation) and 58 kJ/mol (degradation) for un-blanched broccoli. Storage of un-blanched broccoli at - 45 °C for 40 days maximized sulforaphane content. These results could be useful to propose broccoli storage conditions that preserve or maximize sulforaphane content.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app