Add like
Add dislike
Add to saved papers

Limits of Detection of Gravimetric Signals on Earth.

Scientific Reports 2018 October 18
Gravimetry is a well-established tool to probe the deep Earth's processes. Geophysical signals coming from the deep Earth, like the inner core free oscillations, have however never been detected. Challenging quests raise the question of the limits of detection of elusive signals at the Earth's surface. Knowledge of the instrumental limits and of the environmental noise level at a site is fundamental to judge the true sensitivity of an instrument. We perform a noise level comparison of various gravimeters and a long-period seismometer at the J9 gravimetric observatory of Strasbourg (France) to provide a reference of instrumental performances. We then apply a three-channel correlation analysis of time-varying surface gravity from superconducting gravimeter records to isolate the instrumental self-noise from the environmental noise. The self-noise coherence analysis shows that the instrumental noise level remains flat towards lower frequencies till 10-4  Hz. At seismic frequencies, the self-noise is well explained by a Brownian thermal noise model. At daily and sub-daily time-scales, self-noise is increasing with the period but to a much lesser extent than observed noise level. Observed Earth's ambient noise level at sub-seismic frequencies is hence mostly due to unmodeled geophysical processes. At hourly time-scales, our ability to detect elusive signals coming from the deep Earth's interior is not limited by the instrument capability but is mostly due to the environmental effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app