Add like
Add dislike
Add to saved papers

Constitutive P2Y 2 receptor activity regulates basal lipolysis in human adipocytes.

Journal of Cell Science 2018 October 18
White adipocytes are key regulators of metabolic homeostasis, which release stored energy as free fatty acids via lipolysis. Adipocytes possess both basal and stimulated lipolytic capacity, but limited information exists regarding the molecular mechanisms that regulate basal lipolysis. Here, we describe a mechanism whereby autocrine purinergic signaling and constitutive P2Y2 receptor activation suppresses basal lipolysis in primary human in vitro differentiated adipocytes. We found that human adipocytes possess cytoplasmic calcium tone due to ATP secretion and constitutive P2Y2 receptor activation. Pharmacological antagonism or knockdown of P2Y2 receptors increases intracellular cAMP levels and enhances basal lipolysis. P2Y2 receptor antagonism works synergistically with phosphodiesterase inhibitors in elevating basal lipolysis, but is dependent upon adenylate cyclase activity. Mechanistically, we suggest that the increased calcium tone exerts an anti-lipolytic effect by suppression of calcium-sensitive adenylate cyclase isoforms. We also observed that acute enhancement of basal lipolysis following P2Y2 receptor antagonism alters the profile of secreted adipokines leading to longer term adaptive decreases in basal lipolysis. Our findings reveal that basal lipolysis and adipokine secretion are controlled by autocrine purinergic signaling in human adipocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app