Add like
Add dislike
Add to saved papers

Synthesis of new thiosemicarbazones and semicarbazones containing the 1,2,3-1H-triazole-isatin scaffold: trypanocidal, cytotoxicity, electrochemical assays, and molecular docking.

Medicinal Chemistry 2018 September 13
BACKGROUND: Chagas disease, also known as American trypanosomiasis, is classified as one of the 17 most important neglected diseases by the World Health Organization. The only drugs with proven efficacy against Chagas disease are benznidazole and nifurtimox, however both show adverse effects, poor clinical efficacy,and the development of resistance. For these reasons, the search for new effective chemical entities is a challenge to research groups and the pharmaceutical industry.

OBJECTIVE: Synthesis and antitrypanosomal activities of a series of thiosemicarbazones and semicarbazones containing the 1,2,3-1H triazole isatin scaffold.

METHOD: The 5'-(4-alkyl/aryl)-1H-1,2,3-triazole-isatins were prepared by Huisgen 1,3-dipolar cycloaddition and the thiosemicarbazones and semicarbazones were obtained by the 1:1 reactions of the carbonylated derivatives with thiosemicarbazide and semicarbazide hydrochloride, respectively, in methanol, using conventional reflux or microwave heating. The compounds were assayed for in vitro trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Beyond the thio/semicarbazone derivatives, isatin and triazole synthetic intermediates were also evaluated for comparison.

RESULTS: A series of compounds was prepared in good yields. Among the 37 compounds evaluated, 18 were found to be active, in particular thiosemicarbazones containing a non-polar saturated alkyl chain (IC50 = 24.1, 38.6, and 83.2 μM; SI = 11.6, 11.8, and 14.0, respectively). To further elucidate the mechanism of action of these new compounds, the redox behaviour of some active and inactive derivatives were studied by cyclic voltammetry. Molecular docking studies were also performed in two validated protein targets of Trypanosoma cruzi, i.e., cruzipain (CRZ) and phosphodiesterase C (TcrPDEC).

CONCLUSION: A class of thio/semicarbazones structurally simple and easily accessible were synthesized. Compounds containing thiosemicarbazone moieties showed the best results in the series, being more active than the corresponding semicarbazones. Our results indicated that the activity of these compounds does not originate from an oxidation-reduction pathway but probably from the interactions with trypanosomal enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app