Add like
Add dislike
Add to saved papers

Ni-CNT Chemical Sensor for SF₆ Decomposition Components Detection: A Combined Experimental and Theoretical Study.

Sensors 2018 October 17
SF₆ decomposition components detection is a key technology to evaluate and diagnose the insulation status of SF₆-insulated equipment online, especially when insulation defects-induced discharge occurs in equipment. In order to detect the type and concentration of SF₆ decomposition components, a Ni-modified carbon nanotube (Ni-CNT) gas sensor has been prepared to analyze its gas sensitivity and selectivity to SF₆ decomposition components based on an experimental and density functional theory (DFT) theoretical study. Experimental results show that a Ni-CNT gas sensor presents an outstanding gas sensing property according to the significant change of conductivity during the gas molecule adsorption. The conductivity increases in the following order: H₂S > SOF₂ > SO₂ > SO₂F₂. The limit of detection of the Ni-CNT gas sensor reaches 1 ppm. In addition, the excellent recovery property of the Ni-CNT gas sensor makes it easy to be widely used. A DFT theoretical study was applied to analyze the influence mechanism of Ni modification on SF₆ decomposition components detection. In summary, the Ni-CNT gas sensor prepared in this study can be an effective way to evaluate and diagnose the insulation status of SF₆-insulated equipment online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app