Add like
Add dislike
Add to saved papers

One-Step Synthesis Heterostructured g-C₃N₄/TiO₂ Composite for Rapid Degradation of Pollutants in Utilizing Visible Light.

Nanomaterials 2018 October 17
To meet the urgent need of society for advanced photocatalytic materials, novel visible light driven heterostructured composite was constructed based on graphitic carbon nitride (g-C₃N₄) and fibrous TiO₂. The g-C₃N₄/TiO₂ (CNT) composite was prepared through electrospinning technology and followed calcination process. The state of the g-C₃N₄ and fibrous TiO₂ was tightly coupled. The photocatalytic performance was measured by degrading the Rhodamine B. Compared to commercial TiO₂ (P25® ) and electrospun TiO₂ nanofibers, the photocatalytic performance of CNT composite was higher than them. The formation of CNT heterostructures and the enlarged specific surface area enhanced the photocatalytic performance, suppressing the recombination rate of photogenerated carriers while broadening the absorption range of light spectrum. Our studies have demonstrated that heterostructured CNT composite with an appropriate proportion can rational use of visible light and can significantly promote the photogenerated charges transferred at the contact interface between g-C₃N₄ and TiO₂.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app