Add like
Add dislike
Add to saved papers

Experimental Characterization of Inkjet-Printed Stretchable Circuits for Wearable Sensor Applications.

Sensors 2018 October 17
This paper introduces a cost-effective method for the fabrication of stretchable circuits on polydimethylsiloxane (PDMS) using inkjet printing of silver nanoparticle ink. The fabrication method, presented here, allows for the development of fully stretchable and wearable sensors. Inkjet-printed sinusoidal and horseshoe patterns are experimentally characterized in terms of the effect of their geometry on stretchability, while maintaining adequate electrical conductivity. The optimal fabricated circuit, with a horseshoe pattern at an angle of 45°, is capable of undergoing an axial stretch up to a strain of 25% with a resistance under 800 Ω. The conductivity of the circuit is fully reversible once it is returned to its pre-stretching state. The circuit could also undergo up to 3000 stretching cycles without exhibiting a significant change in its conductivity. In addition, the successful development of a novel inkjet-printed fully stretchable and wearable version of the conventional pulse oximeter is demonstrated. Finally, the resulting sensor is evaluated in comparison to its commercially available counterpart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app