Add like
Add dislike
Add to saved papers

Cdh1 and Pik3ca Mutations Cooperate to Induce Immune-Related Invasive Lobular Carcinoma of the Breast.

Cell Reports 2018 October 17
CDH1 and PIK3CA are the two most frequently mutated genes in invasive lobular carcinoma (ILC) of the breast. Transcription profiling has identified molecular subtypes for ILC, one of which, immune-related (IR), is associated with gene expression linked to lymphocyte and macrophage infiltration. Here, we report that deletion of Cdh1, together with activation of Pik3ca in mammary epithelium of genetically modified mice, leads to formation of IR-ILC-like tumors with immune cell infiltration, as well as gene expression linked to T-regulatory (Treg) cell signaling and activation of targetable immune checkpoint pathways. Interestingly, these tumors show enhanced Rac1- and Yap-dependent transcription and signaling, as well as sensitivity to PI3K, Rac1, and Yap inhibitors in culture. Finally, high-dimensional immunophenotyping in control mouse mammary gland and IR-ILC tumors by mass cytometry shows dramatic alterations in myeloid and lymphoid populations associated with immune suppression and exhaustion, highlighting the potential for therapeutic intervention via immune checkpoint regulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app