Add like
Add dislike
Add to saved papers

Fundamental patterns and predictions of event size distributions in modern wars and terrorist campaigns.

It is still unknown whether there is some deep structure to modern wars and terrorist campaigns that could, for example, enable reliable prediction of future patterns of violent events. Recent war research focuses on size distributions of violent events, with size defined by the number of people killed in each event. Event size distributions within previously available datasets, for both armed conflicts and for global terrorism as a whole, exhibit extraordinary regularities that transcend specifics of time and place. These distributions have been well modelled by a narrow range of power laws that are, in turn, supported by some theories of violent group dynamics. We show that the predicted event-size patterns emerge broadly in a mass of new event data covering all conflicts in the world from 1989 to 2016. Moreover, there are similar regularities in the events generated by individual terrorist organizations, 1998-2016. The existence of such robust empirical patterns hints at the predictability of size distributions of violent events in future wars. We pursue this prospect using split-sample techniques that help us to make useful out-of-sample predictions. Power-law-based prediction systems outperform lognormal-based systems. We conclude that there is indeed evidence from the existing data that fundamental patterns do exist, and that these can allow prediction of size distribution of events in modern wars and terrorist campaigns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app