Add like
Add dislike
Add to saved papers

Quantitative trait loci mapping for the shear force value in breast muscle of F2 chickens.

Poultry Science 2018 October 18
The shear force value is one of the major traits that determine meat quality. In the present study, we performed QTL analysis for chicken breast muscle shear force value at 7 wk of age using 545 single nucleotide polymorphism (SNP) markers developed via restriction-site associated DNA sequencing (RAD-seq). An F2 resource family was generated by mating Oh-Shamo, a native Japanese chicken breed, and the White Plymouth Rock chicken breed. A total of 215 F2 birds were produced. Simple interval mapping revealed one significant main-effect QTL between 6.28 and 8.10 Mb SNPs on the chromosome Z with a logarithm of odds score of 5.53 at the genome-wide 5% level. At this QTL, the confidence interval, phenotypic variance explained, and additive effect were 26 cM, 12.24%, and -0.31 in males and -0.34 in females, respectively. No QTL with epistatic interaction effects were detected. To our knowledge, this is the first report on a QTL affecting the shear force value in the chicken breast muscle, using SNP markers derived from RAD-seq.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app