Add like
Add dislike
Add to saved papers

Physiological evidence of integrin-antibody reactive proteins influencing the innate cellular immune responses of larval Galleria mellonella hemocytes.

Insect Science 2018 October 18
Larval Galleria mellonella (L.) hemocytes form microaggregates in response to stimulation by Gram-positive bacteria. Hemocyte adhesion to foreign materials is mediated by the cAMP/protein kinase A pathway and the β-subunit of cholera toxin using a cAMP- independent mechanism. Cholera toxin-induced microaggregation was inhibited by the integrin inhibitory RGDS peptide, implying integrins may be part of the mechanism. Based on the types of mammalian integrin-antibody reactive proteins affecting hemocyte adhesion and bacterial-induced responses α5 , αv , β1 , and β3 subunits occurred on both granular cell and plasmatocyte hemocyte subtypes. A fluorescent band representing the binding of rabbit α5 -integrin subunit antibodies occurred between adhering heterotypic hemocytes. The frequency of the bands was increased by cholera toxin. The α5 and β1 rabbit integrin subunit antibodies inhibited removal of Bacillus subtilis (Cohn) from the hemolymph in vivo. A α5 β1 -specific synthetic peptide blocker similarly diminished hemocyte function whereas the αv β3 -specific inhibitory peptide and the corresponding integrin subunit antibodies did not influence non- self hemocyte activities. Western blots revealed several proteins reacting with a given integrin-antibody subtype. Thus integrin-antibody reactive proteins (which may include integrins) with possible α5 and β1 epitopes modulate immediate hemocyte function. Confocal microscopy established plasmatocyte adhesion to and rosetting over substrata followed by granular cell microaggregate adhesion to plasmatocytes during early stage nodulation. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app