Add like
Add dislike
Add to saved papers

Orthogonal superposition rheometry of colloidal gels: time-shear rate superposition.

Soft Matter 2018 October 32
We explore the relaxation behavior of model colloidal gels under steady shear flow by means of orthogonal superposition rheometry. Fumed silica and carbon black dispersions in Newtonian matrices are used as a model system. As shear rate increases, the frequency dependent orthogonal moduli of the gels shift along the frequency axis without changing their shape, which finally can be superimposed to yield a single master curve. This indicates that the shear rate tunes a master clock for overall relaxation modes in the sheared colloidal gels to produce a "time-shear rate superposition (TSS)", as temperature does in polymeric liquids to produce a time-temperature superposition (TTS). The horizontal shift factor required at each shear rate to obtain the master curve is found to be directly proportional to the suspension viscosity for all the cases. From this result, we suggest that the suspension viscosity determines the overall relaxation time of the particles in the flowing colloidal gel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app