Add like
Add dislike
Add to saved papers

PHAGE-BASED ANTI-HER2 VACCINATION CAN CIRCUMVENT IMMUNE TOLERANCE AGAINST BREAST CANCER.

Δ16HER2 is a splice variant of HER2 and defined as the transforming isoform in HER2-positive breast cancer. It has been shown that Δ16HER2 promotes breast cancer aggressiveness and drug resistance. In the present work, we used in silico modelling to identify structural differences between Δ16HER2 and the wild-type HER2 proteins. We then developed DNA vaccines specifically against the Δ16HER2 isoform and showed that these immunotherapies hampered carcinogenesis in a breast cancer transplantable model. However, the vaccines failed to elicit immune protection in Δ16HER2 transgenic mice because of tolerogenic mechanisms towards the human HER2 self-antigen, a scenario commonly seen in HER2+ patients. Thus, we engineered bacteriophages with immunogenic epitopes of Δ16HER2 exposed on their coat for use as anticancer vaccines. These phage-based vaccines were able to break immune tolerance, triggering a protective anti-Δ16HER2 humoral response. These findings provide a rationale for the use of phage-based anti-HER2/Δ16HER2 vaccination as a safe and efficacious immunotherapy against HER2-positive breast cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app