Add like
Add dislike
Add to saved papers

Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array.

Analytica Chimica Acta 2018 December 22
Nutrient pollution is of worldwide environmental and health concerns due to extensive use of nitrogen fertilizers and release of livestock waste, which induces nitrite compounds in aquatic systems. Herein a surface-enhanced Raman scattering (SERS) sensor is developed for nitrite detection based on coupling between the plasmonic gold nanostars and the silver nanopyramid array. When nitrite is present in the assay, an azo group is formed between the 1-naphthylamine-functionalized silver nanopyramids and the 4-aminothiophenol-functionalized gold nanostars. This not only generates the SERS spectral fingerprint for selective detection, but also creates "hot spots" at the gap between the Au nanostars and the Ag nanopyramids where the azo group is located, amplifying SERS signals remarkably. Finite-difference time-domain (FDTD) simulation shows a SERS enhancement factor of 4 × 1010  at the "hot spots". As a result, the SERS sensor achieves a limit of detection of 0.6 pg/mL toward nitrite in water, and enables nitrite detection in real-world river water samples. In addition, this sensor eliminates the use of any Raman reporter and any expensive molecular recognition probe such as antibody and aptamer. This highly sensitive, selective and inexpensive SERS sensor has unique advantages over colorimetric, electrochemical and fluorescent devices for small molecule detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app