Add like
Add dislike
Add to saved papers

Controlled Deposition of ZnS Nanoparticles on CuS Nanoplates for Visible-Light-Driven Photocatalytic H₂ Production.

With giving property to guide and control charge carries at the nanoscale, fabrication of heterostructure photocatalyst with desirable spatial distribution has been significantly valued. In this study, by using CuS nanoplates as seeds, CuS@ZnS core-shell heterojunction photocatalysts with diverse morphologies were developed via controlled synthesis kinetics. Kinetic control was completed through manipulation of the injection rate of Zn2+ precursor with a syringe pump as well as the reaction temperature. It is found that the growth is determined by the deposition rate relative to the diffusion rate of the ZnS growth monomers. Specifically, at a high injection rate and a relatively low reaction temperature, ZnS monomers on the surface of the CuS nanoplate will be in a localized manner and tend to form island nanoparticles. On the contrary, when surface diffusion is facilitated at a lower injection rate and a higher reaction temperature, the morphology of the ZnS nanocrystals can be switched to flat ZnS layers covering the surface of CuS. In addition, the heterostructures have found with shape-dependent photocatalytic performance toward H₂ evolution under visiblelight irradiation. The CuS@ZnS core-shell composites that possess ZnS islands exhibit the highest photocatalytic activity. The corresponding H₂ generation rate reaches 6.3 μ mol h-1 g-1 , which is 37.9 times of that for CuS@ZnS core-shell nanostructure with flat surface. This work thus provides a powerful means for the rational design and synthesis of heterojunctions with spatially controlled distribution of the component.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app