Add like
Add dislike
Add to saved papers

Involvement of MicroRNA-133a in the Protective Effect of Hydrogen Sulfide against Ischemia/Reperfusion-Induced Endoplasmic Reticulum Stress and Cardiomyocyte Apoptosis.

Pharmacology 2018 October 17
AIM: Myocardial ischemia/reperfusion (I/R) injury is a severe trauma that cells undergo and is associated with cardiomyocyte apoptosis. Recently, miRNAs have been demonstrated to play an important role in cardiovascular biology and disease. However, whether the miR-133a and ER stress play a role in hydrogen sulfide (H2S) protection of cardiomyocytes against I/R-induced apoptosis remains unclear.

METHODS: The neonatal cardiomyocytes were prepared to be treated with H2S or transfected with miR-133a activator or miR-133a inhibitor, either separately or in combination. Non-treated cardiomyocytes served as control. The ER stress biomarker GRP78, CHOP, and eIF2α expression levels were measured by Western blot. Cell apoptosis was assessed by flow cytometry after staining with the Annexin V- FITC. Proliferation was monitored by BrdU labeling, while cell migration and invasion were determined by Transwell assays.

RESULTS: Pre-treatment of H2S and overexpression of miR-133a reversed I/R-induced ER stress and cardiomyocyte apoptosis in vitro and in vivo. The proliferation, migration, and invasion of cardiomyocytes were significantly increased by co-treatment with H2S and overexpression of miR-133a.

CONCLUSION: These findings suggest the protective effect of miR-133a against I/R-induced ER stress and cardiomyocyte apoptosis and its enhancement of cell motility. Thus, cardioprotection by miR-133a overexpression provides a novel therapeutic approach to the treatment of ischemic heart diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app