Add like
Add dislike
Add to saved papers

Variation in human vertebral body strength for vertebral body samples from different locations in segments L1-L5.

Clinical Biomechanics 2018 October 11
BACKGROUND: The human spine, in particular the lumbar spine, is subject to significant compressive and bending stresses, which affect the structure of the bone tissue of the vertebrae. The more heterogeneous the structure of the spongy bone tissue, the less resistant the whole vertebral body. It is therefore necessary to establish variations in bone strength parameters within one particular vertebral body.

METHODS: The research material comprised human L1-L5 lumbar vertebrae sampled from 15 donors aged 29-35. A total of 975 samples prepared from the collected material were subjected to compressive and bending strength tests. The samples for the tests were collected from carefully selected locations in order to discover the strength properties of various parts of the vertebral body.

FINDINGS: In the case of sample 2 (located in the posterior part of the vertebra, at mid-height) the stress values were the lowest and there were statistically significant differences compared to other samples. Moreover the value of compressive force in this case was lower for vertebrae with higher numbers. Top and bottom samples demonstrated statistically significant higher mean values of destructive stress. In terms of the bending strength test, the mean value of destructive stress in all lumbar vertebrae for all samples increased for vertebrae with higher numbers.

INTERPRETATION: The spongy tissue in healthy vertebral bodies has a very heterogeneous structure. This may be due to the presence of the nutrient canal and the arc structure allowing more springy movement and improved transfer of loads by the vertebral body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app